heorem 1: Any Clifford operations, applied to the input state 10)⁸ⁿ followed by the 2 measurements, can be simulated efficiently in the strong sense. <u>Proof:</u> The stabilizer group of the input state is $\langle \{ Z_i \} \rangle$ (i=0,1,..., n-1) (lifford operations < { S; }) suppose measurement output is given by {mi=0,1} -> probability can be calculated as follows: (i) Set stabilizer generators (1) and initial probability p⁽⁰⁾=1 (ii) For K=0,1,..., n-1, repeat the following i) If $(-1)^{m_{K}} Z_{K} \in \mathcal{G}^{(K)}$, update the probability $p^{(K+1)} = p^{(K)}$, because the measurement outcome m_{K} is obtained

with probability 1. update stabilizer group g(K+1) g(K) 2) Else, if $(-1)^{m_{\kappa} \oplus 1} Z_{\kappa} \in \mathcal{J}^{(\kappa)}$ \rightarrow update $p^{(k+1)}=0$ 3) Else, g(K) is updated into g(K+1) by removing anticommuting generator and adding (-1)^mZ_K as new generator update $p^{(k+1)} = p^{(k)}/2$ iii) Return p⁽ⁿ⁾ as the probability of obtaining measurement outcome {mi}. Note: Can efficiently decide about the occurrence of the 3 cases in ii) by checking commutability of Zr with stabilizer generators of y(x)

Theorem 2.2:
Any Clifford operations, applied to any
product states of convex mixtures of the
Pauli basis states, followed by 2 measurements
can be efficiently simulated in the weak sense.
"weak sense": classical simulation of a
quantum circuit which measures the
output x according to prob. distr. P.(x)
(without explicit computation of
$$P_c(x)$$
)
Proof:
Suppose the ith imput qubit is given by
 $P_i = p_{x+}^{(i)} |t> <-1 + p_{y+}^{(i)} |t|>
 $+ p_{y-}^{(i)} +i> <-1 + p_{z+}^{(i)} |o> <0| + P_{z-}^{(i)} |1> <1$
where $\sum_{\alpha = x_i y, z} \sum_{z=z} P_{\alpha, v}^{(z)} = 1$
 \longrightarrow imput state of each qubit
vandomly sampled $\{p_{\alpha, z}^{(i)}\}$$

Hadamard operation on (i-1)th qubit

$$\rightarrow \langle \cdots, Z_{i-1}, Z_{i-1}, X_{i+1}, Z_{i+2}, X_{i-1}, Z_{i+1}, \cdots \rangle, \langle X_i \rangle$$

$$= \underbrace{- \bigoplus_{i=1}^{H_{i+1}}}_{i+1} \underbrace{- \bigoplus_{i=1}^$$

§ 2.6 Measurement-Based Quantum Comp.
1) Quantum teleportation:
Suppose Alice and Bob share a
maximally entangled Bell-state:

$$|\beta_{00}\rangle = \frac{|0\rangle_{0}|0\rangle_{0} + |1\rangle_{0}|1\rangle_{0}}{12}$$

Now consider an arbitrary qubit
 $|1\rangle = \alpha |0\rangle + |\beta||\rangle$
with α and β unknown to Alice.
Consider the following circuit:
 $|1\rangle$
 $|1\rangle$

Regrouping gives

$$|\mathcal{H}_{2}\rangle = \frac{1}{2} \left[|00\rangle (\alpha |0\rangle + \beta |1\rangle) + |01\rangle (\alpha |1\rangle + \beta |0\rangle) + |10\rangle (\alpha |1\rangle - \beta |0\rangle) \right]$$

$$|\mathcal{H}_{2}\rangle = \frac{1}{2} \left[|00\rangle (\alpha |0\rangle + \beta |1\rangle) + |11\rangle (\alpha |1\rangle - \beta |0\rangle) \right]$$

$$|\mathcal{H}_{3}\rangle = \left[|00\rangle + \beta |1\rangle + |10\rangle \right]$$

$$|01\rangle = \left[|00\rangle + \beta |1\rangle \right$$