
 

Theorem 1

Any Clifford operations applied to the

input state 107 followed by the Z
measurements can be simulated efficiently
in the strong sense

Proof
The stabilizer group of the input state
is Zi i oil in l

cfordoperations si

suppose measurement output is given

by mi on probability can be

calculated as follows
i set stabilizer generators Y Si

and initial probability p I

lil For k o l in l repeat the following
1 If C 11m Z E Y update the

probability pet pin because the
measurement outcome me is obtained



with probability 1

update stabilizer group yet yet
2 Else if 1 me z eyes

update plan o

3 Else Y is updated into y

by removing anticommuting
generator and adding C it Z
as new generator
update plane pay

iii Return pal as the probability of
obtaining measurement

outcome mi

Note Can efficiently decide about the
occurrence of the 3 cases in ii

by checking commutability of Z
with stabilizer generators of yo

I



Theorem 2.2

Any Clifford operations applied
to any

product states of convex mixtures of the
Pauli basis states followed by Z measurement

can be efficiently simulated in the weak sense

weak sense classical simulation of a

quantum circuit which measures the

output x according to prob distr Pe G

without explicit computation of PG
Proof
suppose the ith input qubit is given by

Pi pit it ctltpxttsc ltpy.li Gil
pig ti s it pit to Col Pet'll al

where E E
Ey z

Pail

input state of each qubit
randomly sampled pit



Theorem 2 I for each product of
Pauli basis states output
prob distr can be calculated

combine with random

sampling Pail
a

Note
1 The e gate is a non Clifford
gate no universal quantum comp

2 É't 8 2 It is a non stabilizer state
and lies outside the convex mixture

of Pauli basis states

n t

i

f is Shi

H

11



2.5 Graph States

defined by a graph G VE
vertices tedges

On each vertex there is a qubit
stabilizer generator of graph state IG
is defined as

Ki Xi II Zo V ie V

where Vi j i g e E

IG is defined by
16 T E i it

Cz gate
Xi is transformed

to ki by TMZ D

regular lattices cluster states

0



Pauli basis measurements
consider ID graph state

0 9 QQ O

stabilizer generator Ki Zi Xi Zit

1 measurement of qubit i along Z basis

leads to
Kit Ki Kitt J

t
L ki Zi Kit i

ith qubit is 10

3 decoupled stabilizer groups
L Zi Xi Zi Kit Zits

89 o o
i i it l

this splitting holds for any graph
2 X basis measurement

Xi Ki Kit O Ki kit Zi Xi fit Zita

post measurement stabilizer group
i Zi Xi Xie Zita Zi Zit D Xi



Hadamard operation on i 1 th qubit
L Zi a Zi Xie Zita Xi Ziti D Xi

0 00 f 8i I
equiv

measurement of ith and Citi th qubit
in X basis equiv to measuring
Citi th qubit in ex

1 remove iti th node from graph

0 0 0 0 00

3 Consider Y basis measurement

Yi commutes with ki ki Zi sik YiZit
and Ki kit Zi Yi Yi Zita

post measurement stabilizer group

Zi a Yi Ziti Zi iYit Zita D Yi

phase S on Ci ith and Cienth qubit
L Zi Xi Ziti Zi exit Zita D Xi

0 00 0 0

also 0 0 0 0 0 0



2.6 Measurement Based Quantum Comp

1 Quantum teleportation

suppose Alice and Bob share a

maximally entangled Bell
state

Hoo
1 107 Dall

F

Now consider an arbitrary qubit
1217 410 BID
with a and A unknown to Alice

Consider the following circuit

14 I EM
I

IAD HI HI M
T T T

14.7 14 1427 14 As
we start with

4 Lalo too l'D Ali 100 111

as input state
NOT 121 1410 1007 1117 Ali Giotto

Hadamard 1427 41 103 117 1007 111

B Io 11 110 101



Regrouping gives
1427 12 100 2103 111 101 Histria

110 2107 1117 111 2113 1107

Bob's post measurement state

00 1 314,60017 4107 1117
01 1 314310117 4117 7107
10 14311017 14107 1117
11 1436117 4117 1107

Now Bob just has to apply x42M

for Mito to his qubit to

recover 14 Voila


